ECOLOGICAL SAMPLING: NEW METHODOLOGIES TO DEFINE THE STRATA BOUNDARY POSITIONS AND SAMPLE EFFORT ALLOCATION USING INFORMATION ON SPECIES DISTRIBUTION AND ECOLOGICAL VARIABLES.

Peter Jaksons (presenter)
Prof. Jennifer Brown
Dr. Femke Reitsma
Dr. Blair Robertson
Main question: Species, how many and where?

Problem: Often based on practical and convenient sampling issues

Intuitive: Best design is based on species distributions
New Idea:

Do not predefine and fix the number of strata, boundary positions or sampling effort allocation, create an adaptive strategy based on species distributions and other variables.

Assumption:

Best design is based on species distributions.
Create 30 by 30 grid sampling area

Species → Boundary → Sample

Strata boundary positions
Number of strata
Allocation sampling effort

Neyman Allocation

X200
All possible boundary combinations
X 10
EFFECT BOUNDARY POSITION: PRECISION

Uniform distribution

Exponential distribution
EFFECT BOUNDARY POSITION:
ACCURACY

Uniform distribution

Exponential distribution
EFFECT NUMBER OF SAMPLES & NUMBER OF SPECIES

Effect sampling intensity

Effect number of species
EFFECT NUMBER OF STRATA

The table below shows the percentage of plots sampled at different positions for various distributions:

<table>
<thead>
<tr>
<th>% plots sampled</th>
<th>linear distribution</th>
<th></th>
<th>half normal distribution</th>
<th></th>
<th>exponential distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
<td>15%</td>
<td>25%</td>
<td>5%</td>
<td>15%</td>
<td>25%</td>
</tr>
<tr>
<td># species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2%</td>
<td>0%</td>
<td>-1%</td>
<td>-1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>300</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>500</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

- **linear distribution**
 - % position boundary 0: 5%, 15%, 25%
- **half normal distribution**
 - % position boundary 0: 5%, 15%, 25%
- **exponential distribution**
 - % position boundary 0: 5%, 15%, 25%

The minimum N variance average = 1500

boundary_1 = 23
boundary_2 = 53
- Local minima
- Linear relation between boundary position and allocation effort
- Results Neyman allocation

\[n_h = n \times \frac{(N_h \times \sigma_h)}{\sum_i (N_i \times \sigma_i)} \]
New Idea:

Do not predefine and fix the number of strata, boundary positions or sampling effort allocation and create an adaptive strategy based on species distributions or other variables.

Assumption:

Best design is based on species distributions.
Sampling using Halton sequence

- More balanced than using uniform distribution
- Spatially balanced in n-dimensions
- Random seed to obtain stochastic model

![Uniform distribution vs Halton Sequence](image)

Balanced in n-dimensions
Is there a reason to increase sampling intensity in a region over other another region? → unequal selection probability
Method

- Based on geographical location

- Based on ecological variables: e.g. Type of habitat

- Based on practical variables: e.g. Distance to road

- Based on prior information: e.g. Field knowledge scientist

<table>
<thead>
<tr>
<th>h.x</th>
<th>h.y</th>
<th>h.reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.84</td>
<td>0.53</td>
</tr>
<tr>
<td>0.63</td>
<td>0.62</td>
<td>0.85</td>
</tr>
<tr>
<td>0.74</td>
<td>0.98</td>
<td>0.02</td>
</tr>
</tbody>
</table>
FUTURE WORK

Problems:

- How to define probabilities rejection sampling?
- Optimal sample size (over time)?
- Reliability ecological interpretation results?

Practical

- Create easily accessible package for ecologists
- **Implementation in GIS**
- Testing method in the field