Status Analysis: projecting genotype performance into long-term environment discrimination space

Ian H. DeLacy, Vivi N. Arief, Kaye E. Basford

The University of Queensland, School of Agriculture and Food Sciences, Australia
Definition: Status analysis

• Comparison of current year’s environments discrimination space to the long-term discrimination space (DeLacy et al. 2000)

• This definition is extended to include genotype performance:

 A projection of genotype performance from the current year’s results into the long-term environment discrimination space
Definition: Discrimination space

- Average relationships among environments (in the way in which they discriminate among the genotypes grown in them) displayed in a Cartesian space from an ordination analysis (DeLacy et al. 2000)

- Two-types of discrimination space:
 - Single-year discrimination space
 - Long-term discrimination space
BACKGROUND

• Objective of multi-environment trials is to predict long-term genotype performance in farmers’ fields

• Due to the presence of genotype by environment interactions (GE) in any single year, that GE pattern rarely reflects the long-term GE pattern

• It is expected that averaging GE over years will produce a more stable GE pattern
METHODOLOGY

• Obtaining a single-year location discrimination space and the long-term location discrimination space → pattern analysis

• Projecting single-year genotype × location (GL) data into long-term discrimination space → status analysis
Pattern Analysis

• Calculate GL data for each year using ASREML
 ▪ Model: $y = \mu + \text{trials} + \text{design|trials} + G \times L + \epsilon$
 ▪ Location standardised (Fox & Rossielle, 1982)

• Calculate proximity matrix among locations
 ▪ SED as dissimilarity matrix and correlation matrix as similarity matrix
 ▪ Do for each year and then average over years

• Clustering strategy: Ward’s method

• Ordination: Principal Component Analysis
Symbols

\[n = \text{number of locations in a single-year} \]
\[m = \text{number of long-term locations} \]
\[b = \text{number of locations common to both a single-year and the long-term} \]
\[g = \text{number of genotypes} \]
\[p = \text{number of principal components} \]
Status Analysis

Based on Singular Value Decomposition equation:

If n=m

\[X_{g \times n} = U_{g \times p} D_{p \times p} V_{p \times m}^T \]

then

\[U = X (D V^T)^{-1} \]

\[= X (V^T)^{-1} D^{-1} \]

\[= X V D^{-1} \]
If $n \neq m$ and $n \cap m = b$:

$$\text{then } U_{g \times p}^s = X_{g \times b}^s V_{b \times p}^s D_{p \times p}^{-1}$$

Where:

- $U = \text{genotype projection to long-term discrimination space}$
- $D = \text{singular value of long-term discrimination space}$
- $V = \text{long-term discrimination space}$
Example

Elite Wheat Spring Yield Trials (ESWYT)

- One of CIMMYT international nurseries
- 25 years (1979 – 2004, except 1993)
- Grain yield
- 400 locations
- 685 elite lines targeted for high-input irrigated environments
Number of locations in the first 25 cycle of ESWYT

<table>
<thead>
<tr>
<th>ESWYT Cycle (years)</th>
<th>ESWYT01</th>
<th>ESWYT02</th>
<th>ESWYT03</th>
<th>ESWYT04</th>
<th>ESWYT05</th>
<th>ESWYT06</th>
<th>ESWYT07</th>
<th>ESWYT08</th>
<th>ESWYT09</th>
<th>ESWYT10</th>
<th>ESWYT11</th>
<th>ESWYT12</th>
<th>ESWYT13</th>
<th>ESWYT14</th>
<th>ESWYT15</th>
<th>ESWYT16</th>
<th>ESWYT17</th>
<th>ESWYT18</th>
<th>ESWYT19</th>
<th>ESWYT20</th>
<th>ESWYT21</th>
<th>ESWYT22</th>
<th>ESWYT23</th>
<th>ESWYT24</th>
<th>ESWYT25</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESWYT01 (79/80)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>ESWYT02 (80/81)</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ESWYT03 (81/82)</td>
<td>9</td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>ESWYT04 (82/83)</td>
<td>9</td>
<td>8</td>
<td>14</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>ESWYT05 (83/84)</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>14</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>ESWYT06 (84/85)</td>
<td>10</td>
<td>12</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>ESWYT07 (85/86)</td>
<td>7</td>
<td>9</td>
<td>13</td>
<td>14</td>
<td>21</td>
<td>32</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>ESWYT08 (86/87)</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>24</td>
<td>28</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>ESWYT09 (87/88)</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>23</td>
<td>28</td>
<td>24</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>ESWYT10 (88/89)</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>19</td>
<td>22</td>
<td>17</td>
<td>24</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>ESWYT11 (89/90)</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>23</td>
<td>28</td>
<td>18</td>
<td>24</td>
<td>21</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>ESWYT12 (90/91)</td>
<td>7</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>19</td>
<td>24</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>ESWYT13 (91/92)</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>15</td>
<td>20</td>
<td>19</td>
<td>22</td>
<td>30</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>ESWYT14 (92/93)</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>20</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT15 (94/95)</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>13</td>
<td>16</td>
<td>21</td>
<td>23</td>
<td>20</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>ESWYT16 (95/96)</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>26</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>ESWYT17 (96/97)</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>17</td>
<td>12</td>
<td>19</td>
<td>21</td>
<td>20</td>
<td>16</td>
<td>24</td>
<td>34</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT18 (97/98)</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>33</td>
<td>30</td>
<td>33</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT19 (98/99)</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>20</td>
<td>34</td>
<td>27</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT20 (99/00)</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>19</td>
<td>11</td>
<td>18</td>
<td>23</td>
<td>18</td>
<td>14</td>
<td>22</td>
<td>24</td>
<td>20</td>
<td>34</td>
<td>27</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT21 (00/01)</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>17</td>
<td>20</td>
<td>18</td>
<td>21</td>
<td>17</td>
<td>18</td>
<td>25</td>
<td>22</td>
<td>16</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>35</td>
<td>37</td>
<td>42</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT22 (01/02)</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>10</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>8</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>27</td>
<td>26</td>
<td>30</td>
<td>42</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT23 (02/03)</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>19</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>21</td>
<td>22</td>
<td>19</td>
<td>25</td>
<td>28</td>
<td>32</td>
<td>41</td>
<td>43</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESWYT24 (03/04)</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>17</td>
<td>21</td>
<td>16</td>
<td>24</td>
<td>23</td>
<td>30</td>
<td>35</td>
<td>31</td>
<td>41</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>ESWYT25 (04/05)</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>29</td>
<td>33</td>
<td>63</td>
</tr>
</tbody>
</table>
EXAMPLE contd.

• Long-term discrimination space:
 - Cumulative pattern analysis (DeLacy et al. 1996) over 25 years
 - Using locations that were used for a minimum of 5 years

• Results:
 - 6 mega-environments (MEs)
 - Several released cultivars

Substitution of location and genotype grouping
CIMMYT mega-environment classification for spring wheat

<table>
<thead>
<tr>
<th>ME</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME1</td>
<td>Irrigated</td>
</tr>
<tr>
<td>ME2</td>
<td>High rainfall</td>
</tr>
<tr>
<td>ME3</td>
<td>Acid soils</td>
</tr>
<tr>
<td>ME4</td>
<td>Low rainfall</td>
</tr>
<tr>
<td>ME5</td>
<td>High temperature</td>
</tr>
<tr>
<td>ME6</td>
<td>High latitude</td>
</tr>
</tbody>
</table>

Braun et al. 1996
Pattern analysis of single-year: 1983 - 1984
Pattern analysis of single-year: 1984 - 1985
Pattern analysis of single-year: 1985 - 1986

PC1 (24%) PC2 (14%) PC3 (10%)

Australasian Applied Statistics Conference, 12 - 15 July 2011, Palm Cove
Long-term discrimination space
57 locations

Australasian Applied Statistics Conference, 12 - 15 July 2011, Palm Cove
Status Analysis: 1985 – 1986

PC1 and PC2

Single-year

Long-term

PC1 (24%) PC2 (14%)

PC1 (14%) PC2 (6%)

Australasian Applied Statistics Conference, 12 - 15 July 2011, Palm Cove
Status Analysis: 1985 – 1986

PC2 and PC3

Single-year

Long-term

Australasian Applied Statistics Conference, 12 - 15 July 2011, Palm Cove
Summary

- **Discrimination space:**
 - PC1 – reflects average genotype performance
 - PC2 & PC3 – reflects G×E interactions

- **Status analysis:**
 - Project genotypes performance in long-term space including in locations they were not tested
 - Evaluate similarity between current year pattern & long-term GE pattern

- **Long-term discrimination space:**
 - Updated with additional data
 - Re-done when there were major changes in germplasm or test locations
References

